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1. INTRODUCTION. .

Let us consider systems

: = f(x,y,t,c)

cy g(x,y,t,c) (1)

of m + n ordinary differential equations on a finite interval,

say 0 < t <_ 1, subject to q initial conditions

A(x(0),y(0),c) = 0 , (2)

and r terminal conditions

B(x(l),y(l),c) = 0 , (3)

with q + r = m + n. We shall assume that f, g. A, and B have

asymptotic series expansions in c with coefficients being

smooth functions of the remaining variables, and we shall seek

the asymptotic behavior of solutions under the condition that

the n x n Jacobian matrix g (x,y,t,0) has a hyperbolic split-
y

ting with k > 0 (strictly) stable and n - k > 0 (strictly) un-

stable eigenvalues for all x and y and for 0 < t < 1. We

shall also suppose that q > k and r > n - k, since linear

examples suggest that a limiting solution as the small posi-

tive parameter c tends to zero is unlikely to occur otherwise.

The reader should realize that the corresponding initial

value problem with k = n has a well-understood asymptotic

solution, as presented in Wasow (1965) and O'Malley (1974).

Initial value problems with a fixed number of purely imaginary
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eigenvalues have been considered by Hoppensteadt and Miranker

(1976) and Kreiss (1979), while Vasilleva and Butuzov (1978)

and O-Malley and Flaherty (1980) discuss problems for which y

has a nullspace. We note that such problems can be consider-

ably more complicated when eigenvalues of g y cross or approach

the imaginary axis (cf., e.g., the resonance examples of

Ackerberg and O'Malley (1970) and the initial value problem of

Levinson (1949)). Finally, note that the strict eigenvalue

stability assumptions can be weakened in "boundary layer

regions" (cf. Howes and O'Malley (1980)). The two-point prob-

lems arise naturally in optimal control theory (cf. Kokotovic

et al. (1976) and O'Malley (1978)), among many other applica-

tions. Moreover, knowing about the asymptotic behavior of

solutions is extremely helpful in developing schemes for the

numerical solution of stiff boundary value problems (cf.
Hemker and Miller (1979) and Flaherty and O'Malley (1980)).

2. THE ASYMPTOTIC APPROXIMATIONS.

With the assumed hyperbolic splitting, we must expect so-

lutions to feature nonuniform convergence as e - 0 (i.e.,

boundary layers) near both endpoints. Indeed, it is natural
to seek bounded (uniform) asymptotic solutions in the form

x(t,c) - X(t,c) + ct(T,E) + €n(o,c)
(4)

y(t,c) - Y(t,C) + u(T,c) + V(0,C)

on 0 < t < 1, where the outer solution (X(t,c),Y(t,c)) repre-

sents the solution asymptotically within (0,1), where the
initial layer correction (cE(T,C),u(r,C)) decays to zero expo-

nentially as the stretched variable

T - t/E (5)

tends to infinity, and where the terminal layer correction

(cn(a,c),v(a,E)) goes to zero as

o - (1 - t)/c (6)

becomes infinite. Within (0.1), then, such solutions are re-

presented by an outer expansion

I+ + JL'+: rI I P t ..
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The limiting uniform approximation corresponding to (4) is

x(t,C) - XoCt) O O(e)

y(t,C) - Y0(t) + I10 (T) + v0 (C) + 0(e)

on 0 < t <_ 1. At t - 0, the singularly perturbed or fast

vector y usually has a discontinuous limit, jumping from

y(0,0) - Y0 (0) + L0(0) to YOM at t = 0+ . An analogous

Heaviside discontinuity occurs near t = 1 whenever U 0 (0) # 0,

and the derivative y(t,c) generally features delta-function

type impulses as e - 0 at both endpoints. (The relation of

such observations to linear systems theory is of considerable

current interest (cf. Francis (1979) and Verghese (1978)). For

problems linear in the fast variable y, we can also find un-

bounded solutions with endpoint impulses (cf. Ferguson (1975)

and the Appendix to this paper).

The outer expansion (7) must satisfy the full system (1)

within (0,1) as a power series in c. Thus, the limiting solu-

tion, (X0,Y0 ), will satisfy the nonlinear and nonstiff reduced

system

k0  f(X0 ,Y0 ,t,0) , 0 = g(X0 ,Y0 ,t,0) (9)

there. Because gy is nonsingular, the implicit function

theorem guarantees a locally unique solution

Y0 (t) - G(X0 ,t)

of the latter algebraic system, so there remains an m-th order

nonlinear system

X 0 = F(X 0 't) S f(X 0 'G(X 0 ,t)'t,0) (11)

for X 0 * Later terms of the expansion (7) will satisfy

linearized versions of the reduced system. The coefficients

of c provide that

and X1  - fx(Xo0YO0t 'O)) 
+  fy(X 0 Y0 t 'O)Y1 + fC(X0' 

YO0t0) ,

r0 +g(X0 'Y0it.O)X1  gy(X 0 .Y 0 .tO)Y1 + g(X 0 ,Y 0 ,t,O)
- - g a -1 g11dG g

so YW(t) - G X + g dG x 1 and F X f- G )
1 x I y HE 1 + fy y a-

+ f . More generally, for each k > 1, we'll obtain a system

of the form

-. 0 ,.. -,
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Yk(t) - Gx(XOt)Xk(t) + ak-l(X O,....Xk-l't)

Xk(t) Fx(Xot)Xk(t) + 8k-l(XO,...,tXk-l(t1)

with successively determined nonhomogeneous terms.

In order to completely specify the outer expansion (7),

we must provide boundary conditions for the m vectors Xk(t),

k > 0. Most critically, we first need to provide m boundary

conditions for the "slow" vector X0(t) - x(t,0) in order to

determine the limiting solution (X0,Y0 ) within (0,1). It may

be natural to attempt to determine them by somehow selecting
some subset of m combinations of the m + n boundary conditions

(2) and (3) evaluated at e = 0 (cf. Flaherty and O'Malley

(1980) where this is done for certain quasilinear problems).

For scalar linear differential equations of higher order, the

first such cancellation law was obtained in Wasow's NYU thesis
(cf. Wasow (1941, 1944)). For linear systems (with coupled

boundary conditions), a (necessarily) more complicated can-

cellation law is contained in Harris' postdoctoral efforts

(cf. Harris (1960, 1973)). These significant early works

suggest that we should seek a cancellation law which ignores

an appropriate combination of k initial conditions and of
n- k terminal conditions, so the limiting solution is deter-

mined by a nonlinear m-th order reduced boundary value problem

= F(X0,t) , 0 < t < 1
(13)

(Xo0(0)) - 0 , ?(X (1)) a 0

involving q - k initial conditions and r - n + k terminal con-

ditions. Hoppensteadt (1971) considered the reverse problem:

Given some solution of a reduced problem, what conditions

guarantee that it provides a limiting solution to the original

problem ()-(3) within (0,1). Hadlock (1973) and Freedman and
Kaplan (1976) also consider singular perturbations of a given

reduced solution, as do Sacker and Sell (1979) who allow the

Jacobian gy to be singular but subject to a "three-band"

condition. Vasil'eva and Butuzov (1973) consider problems

with special boundary conditions, though their results are ex-

-tended to more general boundary conditions by Esipova (1975).

We note that the numerical solution of a reduced problem like

'All
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(13) is much simpler than that of the original problem,

because (13) is not stiff and its order is n instead of n + m.

Thus, the solution of (13) might be used as an approximate so-

lution of the original (full) problem from which to obtain

better approximations by adding boundary layers and by using

Newton's method.

Near t = 0, the terminal boundary layer correction is

negligible, so the representation (4) of our asymptotic solu-

tions requires the initial layer correction (cC,P) to satisfy

the nonlinear system

dt dx _dX= dx dX = f(X + EC.Y + 4,cTC) - f(XYCTC)

(14)
du d( -d- = g(X + c,Y + U,cT,C) - g(X,Y,C¢,C)

on T > 0 and to decay to zero as T - . This, in turn, pro-

vides successive differential equations for the coefficients

in the asymptotic expansion

U(T,C)) . J (l )

Thus, when c = 0, we have the limiting initial layer system

0 f(Xo(O),YO(0) + ;o,0,0) - f(Xo(0),yo(0),00) 1

du0
- g(X0 (O),Y 0 (O) + 40 0,0) - g(Xo(O),Yo(O).0,0)

The decay requirement determines

E = -W -.- (s)ds (16)

as a functional of u0, while u0 satisfies a conditionally

stable nonlinear system

duo
0 g(Xo(O),Yo(0) + U0 0,O) G0 (u0 ;x(0,0))u 0 . (17)

Our hyperbolicity assumption on the eigenvalues of 9y there-

fore implies that the limiting boundary layer correction is

determined by a classical conditional stability problem (17)

• - ' A.' •



on T > 0. The standard theory (of. Coddington and Levinson

(1955) or Hartman (1964) or, in more geometrical terms,

Fenichel (1979) and Hirsch et al. (1977)) shows that for each

x(0,0), there is (at least locally) a k-manifold I(x(0,0))

nontrivially intersecting a neighborhood of the origin such

that for

u0(O) e I(x(0,0)) (18)

the initial value problem for (17) has a unique solution on

T > 0 which decays to zero exponentially as T - -. One very

difficult problem is how to compute the stable initial mani-

fold I, even when x(0,0) is known. Hassard (1979) has begun

to address this problem through a Taylor's series approach and

Kelley's representation of such stable manifolds through the

center manifold theorem.

Recalling that the q limiting initial conditions take the

form.

A(X 0 (0),G(X0 (0),0) + U0 (O),O) a 0 (19)

(cf. (2) and (8)), we will assume that it is possible to solve

k of these q equations (perhaps nonuniquely) for an isolated

solution

0 (0) 5 YX 0 (0))E I(X0 (0)) . (20)

Phrased somewhat differently, in the style of Vasil'eva (1963),

we are asking that the initial vector v0(0) for the leading

term of this initial layer correction belong to the "domain of

influence" of the equilibrium point u0 (T) - 0 of the initial

layer system (17) which is itself parameterized by x(0,0) -

X0 (0). Rewriting the remaining q - k initial conditions as

O(X0 (0)) _ -A(X0 (0),G(X0 (0),0) + Y(X0 (0)),0)} = 0 (21)

(where the prime indicates the appropriate q - k dimensional

subvector), we thereby specify the initial conditions needed

for the reduced boundary value problem (13). Because (21)

* igenerally depends on y, we note that the conditions (21) do

not simply correspond to a subset of the original initial con-

ditions evaluated along the limiting solution (Xo,Y 0).

In the important quasilinear case when gy(xy,.t,O) =

4(x,t) is independent of y (at least near t - 0), the

*, I
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resulting initial layer system (17) is linear and u0 (T) -
e 0(0) for Go - a0(X0(0),0). Thus, u will decay to zero
e U0(O fo 0 0((), 2

as T - - if u0 (0) - P0 (X0 (0))u 0 (0) where P0 - P 0 projects onto

the k dimensional stable eigenspace of G0 (More generally,

the manifold I will not coincide with the stable eigenspace of

60.) When we further assume that Ay(X 0 (0),yO) -A(X 0 (0)) is

independent of y, there will be a unique solution u0 (0) in the
then fixed manifold I(X0 (0)), provided the matrix A(X0 (0))

* P0 (X0 (0))has full rank k (cf. Flaherty and O'Malley (1980)).

A simple nonlinear example occurs when y is a scalar and

g(x,y,t,0) = g1 (x,t)y2 + g2 (xt)y + g3 (xt). Then u0 will
satisfy a Riccati equation with solution

-H0

U0 (T) - H0 u0 (0)/(H 0 +G 0u 0(0))e 0 - G0 P0(0))

for Co = g1 (X0 (0),0) and H0 - gy(X0(0),Y0(0),0,0) as long as

the denominator is nonzero. If H0 1 0, only the trivial

initial layer correction w0 (T) E 0 will be zero at infinity.

With the stability assumption H0 < 0, however, existence on

T > 0 and exponential decay at infinity is guaranteed provided

H0 + G p (0) < 0. Thus, the magnitude of the initial layer

jump u0 (0) must be restricted when G0 0 (0) > 0.

The terminal layer correction (en(a,c),v(o,e)) can be

analyzed quite analogously to the initial layer correction. In

particular, the leading terms (n0,u0) will be determined

through exponentially decaying solutions of the conditionally

stable terminal layer system

dvo0-- -g(X0 (l),Y0 (1) + V0,1,0) -G1 (v0 ;x(l,0))v 0  (22)

on a > 0, which has an n - k dimensional manifold T(x(l,0)) of

initial values v0 (0) providing decaying solutions to (22) as
T- . If we then assume that n - k of the r limiting

terminal conditions

B(X0 (1),G(X0 (1),l) + v0 (0),0) 0 (23)

provide an isolated solution

v0 (0) 8 6(X0 (1)) E T(X0 (l)) , (24)

the remaining r - n + k conditions provide the terminal

conditions

7



Y(X0(l)) S (DIX 0 (l),G(X0 (1),l) + 8(X0 (111,0)" - 0 (25)

for a reduced boundary value problem (13).

The reduced two-point boundary value problem (13) con-

sists of the nonlinear reduced equation (11) of order m

together with the m separated nonlinear boundary conditions

(21) and (25). If it is solvable, such a reduced problem can

have many solutions. Corresponding to any of its isolated

solutions X0 (t), one can expect to obtain a solution of the

original problem (l)-(3), for c sufficiently small, which con-

verges to (X0 ,G(X0 ,t)) within (0,1) as c - 0. Sufficient

hypotheses on the corresponding linearized problem to obtain a

uniform asymptotic expansion (4) are provided by Hoppensteadt

(1971) and others. For this reason, we shall merely indicate

the considerations involved in obtaining further terms of the

initial boundary layer correction and boundary conditions for

higher order terms of the outer expansion.

Further terms of the initial layer correction (15) are

determined from the corresponding coefficients of C k in the

nonlinear system (14). Thus, we must have

d~k
-E = fy(X 0(0lY0 (0) + 0 (T),,0)Uk (T) ,

duk (26)

- gy(X 0O),Y0 (0) + U0(T),OO)uk + qk-1(T)

for k > 1, where the nonhomogeneous terms will be exponen-

tially decaying as T -- because the preceding j's, uj's, and

their derivatives so behave. The homogeneous systems are

linearizations of that for (&0,U0 ), and the decaying vector

will be uniquely provided in terms of Uk by

&k(r) - - d (s)ds . (27)

To obtain w k' it is natural to first consider the variable
coefficient homogeneous system

.d

with 4(T) = gy(X(OlYo(O) + LIO(T),O,O). Our hyperbolicity

assumption (more specifically, the eigenvalue split for 4(-)

( ".- 4
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and the exponential convergence of 4(T) to 4(-)) guarantees

that (28) will have k linearly independent exponentially

decaying solutions as T - -. We assume that the split is

maintained for all T > 0. If we let U(T) be a fundamental

matrix for (28) with U(O) = I and let P0 be a constant n x n

matrix of rank k such that U(r)P 0 provides the linear subspace

of decaying solutions to (28), the decaying solution Uk of

(26) must be of the form

Vk(T) = U(T)P ck + UI(T) (29)

with the particular solution
T

pp-i (T ) =  U(T)PoU- (r)q 1 (r)dr

0

- f U(r)(I - P0)U-l(r)qk-1 (r)dr
T

The vector ck remains to be determined. In problems where G0

is constant, P0 is the P0 used for the quasilinear problem.

The use of such exponential dichotomies (cf. Coppel (1978)) in

the singular perturbations context goes back to Levin and

Levinson (1954). Indeed, the "roughness" of the exponential

dichotomy might be used to justify the use of U(T)P 0 all the

way back to T = 0. Proceeding analogously, the terminal layer

term vk(O) will be determined in the form

Vk(a) = V(G)Pidk + VP_ (o) (30)

where V(c)P is assumed to span an n - k dimensional space of
1

decaying solutions to

i~i I d'dv . - y (X 0()'y0 (1) + v 0 (a)', 1 0) v

on a > 0 and vp _(a) is exponentially decaying and success-
ively determined. nk(a) will uniquely follow from Vk by

integrating dnk/do. To complete the formal determination of

our expansion (4), we must successively specify the constants

ck in (29), dk in (30), and the m boundary conditions for each

x k(t), k 0.

"A' ki
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Since x(O,C) - X(O,c) + £(0,c) and y(O,c) 
~ Y(O,C)

+ u(O,c), the coefficient of ck (for any k > 0) in the initial

condition (2) implies that

Ax(X0 (0),Y 0 (0) + '010),0lXk(0)

+ Ay(X0(0IY0(0) + :0(01,0)(Y (0) + Uk(O))

is successively determined. Since Yk() - Gx(X0(0),0)Xk(0)

and wk(0) - P0ck are also known in terms of preceding

coefficients, we have

(Ax0 + Ay0Gx0)Xk(0) + Ay0P0Ck 6 k- (31)

determined termwise. (The zero subscripts indicate evaluation

along (x(0,0),y(0,0),O).) Assuming that the matrix

Ay (x(0,0),y(0,0),0)P 0  (32)

has its maximal rank k, it will be possible to (perhaps non-

uniquely) solve k of the q equations (31) for

Ck = P0ck . (AyOa0) t [6kl - (Ax0 + AyOGx0)Xk(0) (33)

(with the dagger representing the matrix pseudoinverse). This

leaves the remaining q - k initial conditions

YXk(o) = Ek-l (34)

to be solved for Xk(0). Here

I [I - Ay 0P0(Ay 0 P 0
1 ] (AX0 + AYOGxO)

tt
&k-1 = AyO Po0(Ay P 0) 6k-l' and will have rank q -k.

In analogous fashion, if the matrix

B By(x(l,0)y(l,0).O)P 1  (35)

has its maximal rank n - k, we can use n - k of the terminal

conditions (3) to (generally nonuniquely) provide dk = PIdk in

" (30), and the remaining r - n + k terminal conditions

6 Xk(l) - nk-l (36)

for the outer expansion term Xk(t). Here, nkl is known

successively and

A
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B= I - ByI±(ByI i)](Bxl +B yGxl)

with the subscript 1 indicating evaluation at
(x(l,O),y(l,O),l).

Putting everything together, we've shown that the k-th

term in the outer expansion should satisfy an m-th order

linear boundary value problem

Xk = F x(X0't)X k + 3 k-l (X01 ..... X k-l't)'

(37)

YXk(0) "k-1 Z dXk(l) = nk-1 '

with successively determined nonhomogeneities Ek-l' k-l' and

nk-l" These problems for all k > 0 will have unique solutions

Xk(t) provided the corresponding homogeneous system

F Xo,t)x

YX(o) M , 6X(l) = 0

has only the trivial solution on 0 < t < 1. Otherwise, one

must impose appropriate orthogonality conditions on (37) to

achieve solvability.

Altogether, we've determined possibilities for con-

structing multiple formal asymptotic solutions to our boundary

value problem (l)-(3) in the form (4). To prove that the

corresponding solutions exist for c sufficiently small re-

quires some further analysis (cf. Hoppensteadt (1971),

Vasil'eva and Butuzov (1973), and Eckhaus (1979)), but no

surprises.

3. A SIMPLE EXAMPLE.

A relatively simple example is provided by the harmonic

oscillator system

•il= Y2  ' (38)

cy 2 = (x)y 1 + S(x)

where

a(x) = 1 + 2x and 8(x) = 8x(l - x)

.. t
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Since m = k = n - k = 1 whenever a(x) remains nonzero, we can

expect one dimensional boundary layer behavior at each end-

point. Using the three linear boundary conditions

x(O) + yl(O) - 0 ,

-bx(O) + Y2 (0) = 0 , (39)

x(l) + Y1 (l) = 0

we could hope that the limiting interior behavior is deter-

mined by the reduced system

xo 1 - X0

Y20 0, (40)

S(X0 )Y1 0 + 8(X0) = 0

and a combination of the limiting initial forms X0 (0) + Ylo(0)

and -bX0 (0) set to zero.

By expliciting analyzing the initial layer system and

determining the appropriate projection matrix P0. we find the

initial condition O(X0 (0)) = 0 (needed for the reduced solu-

tion) to be

IC(X0 (0))1CX0 (0) + Y10 (0)) - bX0 (0) = 0 . (41)

Rewriting this as a cubic polynomial, we obtain the three

roots

X0 (0) = 0

and

X0 (0) = - + sgn a0 b +

arranged so that sgn 0 = +1 depending on the sign of
1 + 2X (0). All roots are appropriate for determining an X

except for that range of initial values for which the re-

sulting a(X0(t)) = 3 + 2(X0 (0) - l)e-t has a zero in 0 < < 1.

Then, the equation for Y2 has a turning point and Yl0 (t)

becomes unbounded. When bX (0) - 0, both of the initial
0

conditions for the system are satisfied by the limiting

solution, and there is no nonuniform convergence at t - 0.

t
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Otherwise, there is an initial laser with a nontrivial u0 (y).

Integrating X0(t) to t - 1 (or evaluating the explicit

solution) also determines Y 0 (1). If X0 (1) + YI0 (1) # 0, the

terminal layer correction v0 (a) is also nontrivial.

For b - 2, we obtain the three roots X0 (0) - 0, 0.803,

and -4.29 and three corresponding asymptotic solutions. For

small values of E, the asymptotic solution can be used as a

first guess to obtain rumerical solutions (cf. Flaherty and

O'Malley (1980) and Figures 1-3). For b - 0 and X 0(0) - -7/2,

a(X0 (t)) has a zero above t - 1. This forces the boundary

layer jump JY1 0 (0) - y(l,0)1 to be large (89.8 compared to 0.4

and 0.6 for the other b - 0 roots, X0 (0) - 0 and 1/2) (cf.

Figure 4).

APPENDIX: THE CONSTRUCTION OF IMPULSIVE

SOLUTIONS TO QUASILINEAR PROBLEMS.

It is basic to the preceding development that we can

solve the limiting boundary conditions for initial values of

the boundary layer correction terms (i.e. u0 (0) in (19) and
V0(0) in (23)). Moreover, the solutions must lie on the

stable manifolds I and T for the. corresponding boundary layer

systems. This will certainly be possible when the limiting
boundary conditions A(x(0),y(0),0) or B(x(l),y(lO) are inde-

pendent of y and suggests that the corresponding asymptotic

solutions will then no longer have the form (4). Indeed, the

earlier work of O'Malley (1970) (with m - n - 1) suggests that
the endpoint behavior will then be more singular (i.e.,

impulsive). With the resulting unboundedness in the y vector,

we ask for linearity in the fast variables in order to

generate expansions.

As a sample problem, consider
dx

".v a . fl (x,t,c) + f2 (t,c)y

H d 
(42)

t - g1 (x,t,c) + g2 (tc)y

where g2 (t,0) has k > 0 stable and n - k > 0 unstable eigen-

values throughout 0 < t < 1, subject to the q + r - m + n

boundary conditions

jA

',
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A(x(O),y(0),C) Al(X(O),C) + cA2 (c)y(O) - (

5(x(l),y(l),C) - 0

Since Ay = 0 at c - 0, we shall now seek asymptotic solu-

tions in the form

x(t,C) - X(t,c) + E(T,C) + En(a,c)
1 (44)

1
y(tC) - Y(tC) + Z- U(T,c) + v(a,E)

(as an alternative to (4)) where the terms are all expandable

in c and the boundary layer corrections decay to zero as

before.

The limiting solution (Xo.Y.) within (0.1) satisfies the

reduced system

dX0 =FX,)54,(5
- 0) f(X 0 ,t,0) + f2 (t,0)G(X0 ,t) (45)

where

y0(t) - G(X0 .t) = -g1 (t,0)g1 (X0 ,t,0) (46)

The initial layer correction (u,- U) now satisfies the almost
linear system

d&. f2(CT,¢)J + C[f (X + &,¢rc) - f (XCT,c) I

du
- g2 (cT,e)U + C(g1 (X + qT,C) - gl(X,Cer,C)]

so its leading coefficients satisfy the constant linear system

dCo duo

- - F0 u0 , IT - GOu0 ,

for (F0,G 0) - (f2 (0,0),g 2(0,0)). The decaying solutions are

U 0 (T) - oG PL(0)
= -l (47)

~o(T) F 0G0 W0(
where P0 projects onto the constant k dimensional stable
eigenspace I of G O .* These vectors and higher order terms in

the initial layer correction will necessarily lie in this same
(known) eigenspace. With the expansion (44), our initial
condition takes the limiting form

4.



A (X0 (0) + F G-P J (0),0) + A2(0)PU(0) - 0 (48)

We wish to solve k of these q nonlinear equations for

POo0 (0) S Y(X 0 (0)) •

The solution will be locally unique if the appropriate k x k

Jacobian is nonzero. The remaining q - k initial conditions

will then provide the initial values

O(x0(0)) S (X0 (0) + FG 0 1Y(X 0 (0)),0)

(49)
+ A 2 (O)Y(X 0 (O))) - 0

for the limiting solution X0 (t).

Precedinq analogously, the limiting terminal layer cor-

rection will satisfy the linear system

dn 0  dv 0
a= -lyV 0 , V0

where (F1,G1l - (f2 (l,0),g 2 (l,0)). The decaying solution is

-G a
0(a) P • P0(0),

U0  e 1 P~ 0(
-1 (50)n0 (o) 71C FI v0 (a),(0

where matrix P1 projects onto the constant n - k dimensional

unstable eiqenspace T of G . The limiting terminal conditions

take the form

B(X 0 (1),G(X 0 (1),) + 1?1v0 (0),0) - 0 . (51)

Assuming that we can solve (perhaps nonuniquely) n - k of

these equations for

P VO(0) 3 8(X 0 (l)) M (52)

there will remain r - n + k terminal conditions

'(X 0 (1)) 3 (B(X 0 (l),G(X0 (1),l) + 6(X 0 (1),0)* -0 (53)

for X 0, as in (25). Thus, any limit of a solution of the form

(44) must be determined by

O F(X0 t) ,

(54)
(X0 (0)) = 0 , Y(X0(l)) 0

,,



Assuming this red4ced problem is solvable, we should be able

to construct higher order approximations to solutions without

unusual difficulty. 1
We wish to point out that the initial impulse w U0(r) (

1 G~t/0
aeG0t/CP0W(0) in the representation (44) of the fast vector

y behaves like a multiple of a matrix delta function in the

limit c - 0. It forces the rapid transfer (i.e., the non-

uniform convergence) of the slow vector x from x(0,0) =

0 + 0111 = X0(0) F G_1P0VO(0)_ to X0 (0) in the k dimen-

sional range i or the stable eigenspace of GO . This is in

contrast to the initial Heaviside jump in the y vector and the

uniform convergence of the x vector for asymptotic solutions

of the form (4).
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